Friday, May 28, 2010
Air-Source Heat Pumps
Air-Source Heat Pumps
An air-source heat pump can provide efficient heating and cooling for your home, especially if you live in a warm climate. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel, like in combustion heating systems.
Although air-source heat pumps can be used in nearly all parts of the United States, they do not generally perform well over extended periods of sub-freezing temperatures. In regions with sub-freezing winter temperatures, it may not be cost effective to meet all your heating needs with a standard air-source heat pump.
However, new systems with gas heating as a backup are able to overcome this problem. There is also a "Cold Climate Heat Pump" which shows promise, but is currently facing manufacturing problems. In addition, a version called the "Reverse Cycle Chiller" claims to be able to operate efficiently at below-freezing temperatures.
How They Work
A heat pump's refrigeration system consists of a compressor and two coils made of copper tubing (one indoors and one outside), which are surrounded by aluminum fins to aid heat transfer. In the heating mode, liquid refrigerant in the outside coils extracts heat from the air and evaporates into a gas. The indoor coils release heat from the refrigerant as it condenses back into a liquid. A reversing valve, near the compressor, can change the direction of the refrigerant flow for cooling as well as for defrosting the outdoor coils in winter.
When outdoor temperatures fall below 40°F, a less-efficient panel of electric resistance coils, similar to those in your toaster, kicks in to provide indoor heating. This is why air-source heat pumps aren't always very efficient for heating in areas with cold winters. Some units now have gas-fired backup furnaces instead of electric resistance coils, allowing them to operate more efficiently.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment